573 lines
17 KiB
JavaScript
573 lines
17 KiB
JavaScript
"use strict";
|
|
/**
|
|
* @fileOverview
|
|
* Digital signature scheme based on Curve25519 (Ed25519 or EdDSA).
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2011, 2012, 2014 Ron Garret
|
|
* Copyright (c) 2014 Mega Limited
|
|
* under the MIT License.
|
|
*
|
|
* Authors: Guy K. Kloss, Ron Garret
|
|
*
|
|
* You should have received a copy of the license along with this program.
|
|
*/
|
|
|
|
var core = require('./core');
|
|
var curve255 = require('./curve255');
|
|
var utils = require('./utils');
|
|
var BigInteger = require('jsbn').BigInteger;
|
|
var crypto = require('crypto');
|
|
|
|
/**
|
|
* @exports jodid25519/eddsa
|
|
* Digital signature scheme based on Curve25519 (Ed25519 or EdDSA).
|
|
*
|
|
* @description
|
|
* Digital signature scheme based on Curve25519 (Ed25519 or EdDSA).
|
|
*
|
|
* <p>
|
|
* This code is adapted from fast-djbec.js, a faster but more complicated
|
|
* version of the Ed25519 encryption scheme (as compared to djbec.js).
|
|
* It uses two different representations for big integers: The jsbn
|
|
* BigInteger class, which can represent arbitrary-length numbers, and a
|
|
* special fixed-length representation optimised for 256-bit integers.
|
|
* The reason both are needed is that the Ed25519 algorithm requires some
|
|
* 512-bit numbers.</p>
|
|
*/
|
|
var ns = {};
|
|
|
|
function _bi255(value) {
|
|
if (!(this instanceof _bi255)) {
|
|
return new _bi255(value);
|
|
}
|
|
if (typeof value === 'undefined') {
|
|
return _ZERO;
|
|
}
|
|
var c = value.constructor;
|
|
if ((c === Array || c === Uint16Array || c === Uint32Array) && (value.length === 16)) {
|
|
this.n = value;
|
|
} else if ((c === Array) && (value.length === 32)) {
|
|
this.n = _bytes2bi255(value).n;
|
|
} else if (c === String) {
|
|
this.n = utils.hexDecode(value);
|
|
} else if (c === Number) {
|
|
this.n = [value & 0xffff,
|
|
value >> 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
|
|
} else if (value instanceof _bi255) {
|
|
this.n = value.n.slice(0); // Copy constructor
|
|
} else {
|
|
throw "Bad argument for bignum: " + value;
|
|
}
|
|
}
|
|
|
|
_bi255.prototype = {
|
|
'toString' : function() {
|
|
return utils.hexEncode(this.n);
|
|
},
|
|
'toSource' : function() {
|
|
return '_' + utils.hexEncode(this.n);
|
|
},
|
|
'plus' : function(n1) {
|
|
return _bi255(core.bigintadd(this.n, n1.n));
|
|
},
|
|
'minus' : function(n1) {
|
|
return _bi255(core.bigintsub(this.n, n1.n)).modq();
|
|
},
|
|
'times' : function(n1) {
|
|
return _bi255(core.mulmodp(this.n, n1.n));
|
|
},
|
|
'divide' : function(n1) {
|
|
return this.times(n1.inv());
|
|
},
|
|
'sqr' : function() {
|
|
return _bi255(core.sqrmodp(this.n));
|
|
},
|
|
'cmp' : function(n1) {
|
|
return core.bigintcmp(this.n, n1.n);
|
|
},
|
|
'equals' : function(n1) {
|
|
return this.cmp(n1) === 0;
|
|
},
|
|
'isOdd' : function() {
|
|
return (this.n[0] & 1) === 1;
|
|
},
|
|
'shiftLeft' : function(cnt) {
|
|
_shiftL(this.n, cnt);
|
|
return this;
|
|
},
|
|
'shiftRight' : function(cnt) {
|
|
_shiftR(this.n, cnt);
|
|
return this;
|
|
},
|
|
'inv' : function() {
|
|
return _bi255(core.invmodp(this.n));
|
|
},
|
|
'pow' : function(e) {
|
|
return _bi255(_pow(this.n, e.n));
|
|
},
|
|
'modq' : function() {
|
|
return _modq(this);
|
|
},
|
|
'bytes' : function() {
|
|
return _bi255_bytes(this);
|
|
}
|
|
};
|
|
|
|
function _shiftL(n, cnt) {
|
|
var lastcarry = 0;
|
|
for (var i = 0; i < 16; i++) {
|
|
var carry = n[i] >> (16 - cnt);
|
|
n[i] = (n[i] << cnt) & 0xffff | lastcarry;
|
|
lastcarry = carry;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
function _shiftR(n, cnt) {
|
|
var lastcarry = 0;
|
|
for (var i = 15; i >= 0; i--) {
|
|
var carry = n[i] << (16 - cnt) & 0xffff;
|
|
n[i] = (n[i] >> cnt) | lastcarry;
|
|
lastcarry = carry;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
function _bi255_bytes(n) {
|
|
n = _bi255(n); // Make a copy because shiftRight is destructive
|
|
var a = new Array(32);
|
|
for (var i = 31; i >= 0; i--) {
|
|
a[i] = n.n[0] & 0xff;
|
|
n.shiftRight(8);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
function _bytes2bi255(a) {
|
|
var n = _ZERO;
|
|
for (var i = 0; i < 32; i++) {
|
|
n.shiftLeft(8);
|
|
n = n.plus(_bi255(a[i]));
|
|
}
|
|
return n;
|
|
}
|
|
|
|
function _pow(n, e) {
|
|
var result = core.ONE();
|
|
for (var i = 0; i < 256; i++) {
|
|
if (core.getbit(e, i) === 1) {
|
|
result = core.mulmodp(result, n);
|
|
}
|
|
n = core.sqrmodp(n);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
var _ZERO = _bi255(0);
|
|
var _ONE = _bi255(1);
|
|
var _TWO = _bi255(2);
|
|
// This is the core prime.
|
|
var _Q = _bi255([0xffff - 18, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
|
|
0xffff, 0xffff, 0x7fff]);
|
|
|
|
function _modq(n) {
|
|
core.reduce(n.n);
|
|
if (n.cmp(_Q) >= 0) {
|
|
return _modq(n.minus(_Q));
|
|
}
|
|
if (n.cmp(_ZERO) === -1) {
|
|
return _modq(n.plus(_Q));
|
|
} else {
|
|
return n;
|
|
}
|
|
}
|
|
|
|
// _RECOVERY_EXPONENT = _Q.plus(_bi255(3)).divide(_bi255(8));
|
|
var _RECOVERY_EXPONENT = _bi255('0ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe');
|
|
// _D = _Q.minus(_bi255(121665)).divide(_bi255(121666));
|
|
var _D = _bi255('52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3');
|
|
// _I = _TWO.pow(_Q.minus(_ONE).divide(_bi255(4)));
|
|
var _I = _bi255('2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0');
|
|
// _L = _TWO.pow(_bi255(252)).plus(_bi255('14def9dea2f79cd65812631a5cf5d3ed'));
|
|
var _L = _bi255('1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed');
|
|
var _L_BI = _bi('1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed', 16);
|
|
|
|
|
|
// ////////////////////////////////////////////////////////////
|
|
|
|
function _isoncurve(p) {
|
|
var x = p[0];
|
|
var y = p[1];
|
|
var xsqr = x.sqr();
|
|
var ysqr = y.sqr();
|
|
var v = _D.times(xsqr).times(ysqr);
|
|
return ysqr.minus(xsqr).minus(_ONE).minus(v).modq().equals(_ZERO);
|
|
}
|
|
|
|
function _xrecover(y) {
|
|
var ysquared = y.sqr();
|
|
var xx = ysquared.minus(_ONE).divide(_ONE.plus(_D.times(ysquared)));
|
|
var x = xx.pow(_RECOVERY_EXPONENT);
|
|
if (!(x.times(x).minus(xx).equals(_ZERO))) {
|
|
x = x.times(_I);
|
|
}
|
|
if (x.isOdd()) {
|
|
x = _Q.minus(x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
function _x_pt_add(pt1, pt2) {
|
|
var x1 = pt1[0];
|
|
var y1 = pt1[1];
|
|
var z1 = pt1[2];
|
|
var t1 = pt1[3];
|
|
var x2 = pt2[0];
|
|
var y2 = pt2[1];
|
|
var z2 = pt2[2];
|
|
var t2 = pt2[3];
|
|
var A = y1.minus(x1).times(y2.plus(x2));
|
|
var B = y1.plus(x1).times(y2.minus(x2));
|
|
var C = z1.times(_TWO).times(t2);
|
|
var D = t1.times(_TWO).times(z2);
|
|
var E = D.plus(C);
|
|
var F = B.minus(A);
|
|
var G = B.plus(A);
|
|
var H = D.minus(C);
|
|
return [E.times(F), G.times(H), F.times(G), E.times(H)];
|
|
}
|
|
|
|
function _xpt_double(pt1) {
|
|
var x1 = pt1[0];
|
|
var y1 = pt1[1];
|
|
var z1 = pt1[2];
|
|
var A = x1.times(x1);
|
|
var B = y1.times(y1);
|
|
var C = _TWO.times(z1).times(z1);
|
|
var D = _Q.minus(A);
|
|
var J = x1.plus(y1);
|
|
var E = J.times(J).minus(A).minus(B);
|
|
var G = D.plus(B);
|
|
var F = G.minus(C);
|
|
var H = D.minus(B);
|
|
return [E.times(F), G.times(H), F.times(G), E.times(H)];
|
|
}
|
|
|
|
function _xpt_mult(pt, n) {
|
|
if (n.equals(_ZERO)) {
|
|
return [_ZERO, _ONE, _ONE, _ZERO];
|
|
}
|
|
var odd = n.isOdd();
|
|
n.shiftRight(1);
|
|
var value = _xpt_double(_xpt_mult(pt, n));
|
|
return odd ? _x_pt_add(value, pt) : value;
|
|
}
|
|
|
|
function _pt_xform(pt) {
|
|
var x = pt[0];
|
|
var y = pt[1];
|
|
return [x, y, _ONE, x.times(y)];
|
|
}
|
|
|
|
function _pt_unxform(pt) {
|
|
var x = pt[0];
|
|
var y = pt[1];
|
|
var z = pt[2];
|
|
var invz = z.inv();
|
|
return [x.times(invz), y.times(invz)];
|
|
}
|
|
|
|
function _scalarmult(pt, n) {
|
|
return _pt_unxform(_xpt_mult(_pt_xform(pt), n));
|
|
}
|
|
|
|
function _bytesgetbit(bytes, n) {
|
|
return (bytes[bytes.length - (n >>> 3) - 1] >> (n & 7)) & 1;
|
|
}
|
|
|
|
function _xpt_mult_bytes(pt, bytes) {
|
|
var r = [_ZERO, _ONE, _ONE, _ZERO];
|
|
for (var i = (bytes.length << 3) - 1; i >= 0; i--) {
|
|
r = _xpt_double(r);
|
|
if (_bytesgetbit(bytes, i) === 1) {
|
|
r = _x_pt_add(r, pt);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
function _scalarmultBytes(pt, bytes) {
|
|
return _pt_unxform(_xpt_mult_bytes(_pt_xform(pt), bytes));
|
|
}
|
|
|
|
var _by = _bi255(4).divide(_bi255(5));
|
|
var _bx = _xrecover(_by);
|
|
var _bp = [_bx, _by];
|
|
|
|
function _encodeint(n) {
|
|
return n.bytes(32).reverse();
|
|
}
|
|
function _decodeint(b) {
|
|
return _bi255(b.slice(0).reverse());
|
|
}
|
|
|
|
function _encodepoint(p) {
|
|
var v = _encodeint(p[1]);
|
|
if (p[0].isOdd()) {
|
|
v[31] |= 0x80;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
function _decodepoint(v) {
|
|
v = v.slice(0);
|
|
var signbit = v[31] >> 7;
|
|
v[31] &= 127;
|
|
var y = _decodeint(v);
|
|
var x = _xrecover(y);
|
|
if ((x.n[0] & 1) !== signbit) {
|
|
x = _Q.minus(x);
|
|
}
|
|
var p = [x, y];
|
|
if (!_isoncurve(p)) {
|
|
throw ('Point is not on curve');
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// //////////////////////////////////////////////////
|
|
|
|
/**
|
|
* Factory function to create a suitable BigInteger.
|
|
*
|
|
* @param value
|
|
* The value for the big integer.
|
|
* @param base {integer}
|
|
* Base of the conversion of elements in ``value``.
|
|
* @returns
|
|
* A BigInteger object.
|
|
*/
|
|
function _bi(value, base) {
|
|
if (base !== undefined) {
|
|
if (base === 256) {
|
|
return _bi(utils.string2bytes(value));
|
|
}
|
|
return new BigInteger(value, base);
|
|
} else if (typeof value === 'string') {
|
|
return new BigInteger(value, 10);
|
|
} else if ((value instanceof Array) || (value instanceof Uint8Array)
|
|
|| Buffer.isBuffer(value)) {
|
|
return new BigInteger(value);
|
|
} else if (typeof value === 'number') {
|
|
return new BigInteger(value.toString(), 10);
|
|
} else {
|
|
throw "Can't convert " + value + " to BigInteger";
|
|
}
|
|
}
|
|
|
|
function _bi2bytes(n, cnt) {
|
|
if (cnt === undefined) {
|
|
cnt = (n.bitLength() + 7) >>> 3;
|
|
}
|
|
var bytes = new Array(cnt);
|
|
for (var i = cnt - 1; i >= 0; i--) {
|
|
bytes[i] = n[0] & 255; // n.and(0xff);
|
|
n = n.shiftRight(8);
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
BigInteger.prototype.bytes = function(n) {
|
|
return _bi2bytes(this, n);
|
|
};
|
|
|
|
// /////////////////////////////////////////////////////////
|
|
|
|
function _bytehash(s) {
|
|
var sha = crypto.createHash('sha512').update(s).digest();
|
|
return _bi2bytes(_bi(sha), 64).reverse();
|
|
}
|
|
|
|
function _stringhash(s) {
|
|
var sha = crypto.createHash('sha512').update(s).digest();
|
|
return _map(_chr, _bi2bytes(_bi(sha), 64)).join('');
|
|
}
|
|
|
|
function _inthash(s) {
|
|
// Need a leading 0 to prevent sign extension
|
|
return _bi([0].concat(_bytehash(s)));
|
|
}
|
|
|
|
function _inthash_lo(s) {
|
|
return _bi255(_bytehash(s).slice(32, 64));
|
|
}
|
|
|
|
function _inthash_mod_l(s) {
|
|
return _inthash(s).mod(_L_BI);
|
|
}
|
|
|
|
function _get_a(sk) {
|
|
var a = _inthash_lo(sk);
|
|
a.n[0] &= 0xfff8;
|
|
a.n[15] &= 0x3fff;
|
|
a.n[15] |= 0x4000;
|
|
return a;
|
|
}
|
|
|
|
function _publickey(sk) {
|
|
return _encodepoint(_scalarmult(_bp, _get_a(sk)));
|
|
}
|
|
|
|
function _map(f, l) {
|
|
var result = new Array(l.length);
|
|
for (var i = 0; i < l.length; i++) {
|
|
result[i] = f(l[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
function _chr(n) {
|
|
return String.fromCharCode(n);
|
|
}
|
|
|
|
function _ord(c) {
|
|
return c.charCodeAt(0);
|
|
}
|
|
|
|
function _pt_add(p1, p2) {
|
|
return _pt_unxform(_x_pt_add(_pt_xform(p1), _pt_xform(p2)));
|
|
}
|
|
|
|
|
|
// Exports for the API.
|
|
|
|
/**
|
|
* Checks whether a point is on the curve.
|
|
*
|
|
* @function
|
|
* @param point {string}
|
|
* The point to check for in a byte string representation.
|
|
* @returns {boolean}
|
|
* true if the point is on the curve, false otherwise.
|
|
*/
|
|
ns.isOnCurve = function(point) {
|
|
try {
|
|
_isoncurve(_decodepoint(utils.string2bytes(point)));
|
|
} catch(e) {
|
|
if (e === 'Point is not on curve') {
|
|
return false;
|
|
} else {
|
|
throw e;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
|
|
/**
|
|
* Computes the EdDSA public key.
|
|
*
|
|
* <p>Note: Seeds should be a byte string, not a unicode string containing
|
|
* multi-byte characters.</p>
|
|
*
|
|
* @function
|
|
* @param keySeed {string}
|
|
* Private key seed in the form of a byte string.
|
|
* @returns {string}
|
|
* Public key as byte string computed from the private key seed
|
|
* (32 bytes).
|
|
*/
|
|
ns.publicKey = function(keySeed) {
|
|
return utils.bytes2string(_publickey(keySeed));
|
|
};
|
|
|
|
|
|
/**
|
|
* Computes an EdDSA signature of a message.
|
|
*
|
|
* <p>Notes:</p>
|
|
*
|
|
* <ul>
|
|
* <li>Unicode messages need to be converted to a byte representation
|
|
* (e. g. UTF-8).</li>
|
|
* <li>If `publicKey` is given, and it is *not* a point of the curve,
|
|
* the signature will be faulty, but no error will be thrown.</li>
|
|
* </ul>
|
|
*
|
|
* @function
|
|
* @param message {string}
|
|
* Message in the form of a byte string.
|
|
* @param keySeed {string}
|
|
* Private key seed in the form of a byte string.
|
|
* @param publicKey {string}
|
|
* Public key as byte string (if not present, it will be computed from
|
|
* the private key seed).
|
|
* @returns {string}
|
|
* Detached message signature in the form of a byte string (64 bytes).
|
|
*/
|
|
ns.sign = function(message, keySeed, publicKey) {
|
|
if (publicKey === undefined) {
|
|
publicKey = _publickey(keySeed);
|
|
} else {
|
|
publicKey = utils.string2bytes(publicKey);
|
|
}
|
|
var a = _bi(_get_a(keySeed).toString(), 16);
|
|
var hs = _stringhash(keySeed);
|
|
var r = _bytehash(hs.slice(32, 64) + message);
|
|
var rp = _scalarmultBytes(_bp, r);
|
|
var erp = _encodepoint(rp);
|
|
r = _bi(r).mod(_bi(1, 10).shiftLeft(512));
|
|
var s = _map(_chr, erp).join('') + _map(_chr, publicKey).join('') + message;
|
|
s = _inthash_mod_l(s).multiply(a).add(r).mod(_L_BI);
|
|
return utils.bytes2string(erp.concat(_encodeint(s)));
|
|
};
|
|
|
|
|
|
/**
|
|
* Verifies an EdDSA signature of a message with the public key.
|
|
*
|
|
* <p>Note: Unicode messages need to be converted to a byte representation
|
|
* (e. g. UTF-8).</p>
|
|
*
|
|
* @function
|
|
* @param signature {string}
|
|
* Message signature in the form of a byte string. Can be detached
|
|
* (64 bytes), or attached to be sliced off.
|
|
* @param message {string}
|
|
* Message in the form of a byte string.
|
|
* @param publicKey {string}
|
|
* Public key as byte string (if not present, it will be computed from
|
|
* the private key seed).
|
|
* @returns {boolean}
|
|
* true, if the signature verifies.
|
|
*/
|
|
ns.verify = function(signature, message, publicKey) {
|
|
signature = utils.string2bytes(signature.slice(0, 64));
|
|
publicKey = utils.string2bytes(publicKey);
|
|
var rpe = signature.slice(0, 32);
|
|
var rp = _decodepoint(rpe);
|
|
var a = _decodepoint(publicKey);
|
|
var s = _decodeint(signature.slice(32, 64));
|
|
var h = _inthash(utils.bytes2string(rpe.concat(publicKey)) + message);
|
|
var v1 = _scalarmult(_bp, s);
|
|
var value = _scalarmultBytes(a, _bi2bytes(h));
|
|
var v2 = _pt_add(rp, value);
|
|
return v1[0].equals(v2[0]) && v1[1].equals(v2[1]);
|
|
};
|
|
|
|
|
|
/**
|
|
* Generates a new random private key seed of 32 bytes length (256 bit).
|
|
*
|
|
* @function
|
|
* @returns {string}
|
|
* Byte string containing a new random private key seed.
|
|
*/
|
|
ns.generateKeySeed = function() {
|
|
return core.generateKey(false);
|
|
};
|
|
|
|
module.exports = ns;
|